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LETTER TO THE EDITOR 

Bulk and surface critical behaviour at the conformal invariant 
point in the 2, model 

C Vanderzande 
Limburgs Universitair Centrum, Departement WNIF, Universitaire Campus, B-3610 
Diepenbeek, Belgium 

Received 4 February 1987 

Abstract. We determine the bulk thermal and magnetic exponents at the conformal invariant 
point in the Z, model with a Monte Carlo based finite-size calculation. Our results are in 
good agreement with the predictions of Zamolodchikov and Fateev. We also argue that 
the ( N  - 1) surface magnetic exponents x b ( j )  in the Z, model are given by j ( N  - j ) /  N 
( j  = 1,. . . , N - 1). This prediction is also verified in a Monte Carlo finite-size calculation 
for the Z5 model. 

The idea that at critical points systems are not only scale invariant but invariant under 
all conformal transformations has led to many interesting developments, especially for 
two-dimensional systems (for a review, see Cardy (1986) or Itzykson (1986)). 

So far the main interest has been focused on theories where the central charge c 
of the Virasoro algebra is less than or equal to one. In these cases, unitarity severely 
limits the possible values of the critical exponents (Friedan et a1 1984). These theories 
describe such well known models as the Ising, Potts or O ( N )  model. 

More recently, Zamolodchikov and Fateev (1985, hereafter referred to as ZF) 
constructed a conformal quantum field theory which is self-dual and has 2, symmetry. 
For these theories, the central charge is found to be 

c = 2( N - 1)/( N + 2) (1) 

meaning that c >  1 for N 2 5 .  Furthermore, ZF predict all possible anomalous 
dimensions x of operators in the theory. They find that the leading thermal exponent 
is given by 

( 2 a )  

whereas the dimensions of the ( N  - 1) order parameters which are present in the theory 
are given by 

x, = 4/( N + 2 )  

x d j )  = j ( N - j ) / N ( N + 2 )  j =  1, .  . . , N-1 .  (26) 
(These exponents x are related to the more familiar exponents y, by x + y  = d = 2). 
These exponents precisely correspond to exponents which were found by Huse (1984) 
in a restricted SOS model (Andrews er a1 1984). However, ZF suggest that the exponents 
(2) should also be the exponents of the critical points which are present in 2, models 
(Fateev and Zamolodchikov 1982). 
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In the present letter we want to verify this conjecture in the case of the Zs model. 
This is the simplest of the Z ,  models which cannot be reduced to Ising or Potts models. 
Furthermore we will not only study the bulk critical exponents given by (2), but also 
the surface exponents which were so far unknown. 

A study of the Z, model similar to the present one has been performed by Alcaraz 
(1986), who works on a one-dimensional quantum version of the Z, model. However, 
he only considered bulk critical behaviour. 

In the Z,  model one has at each site a variable ni which can take on the values 
1,2, . . . , 5 .  The most general (reduced) Hamiltonian involving only nearest-neighbour 
interactions consistent with Z,  symmetry is then given by: 

The phase diagram of this model has been intensively studied in the past (Cardy 1980, 
Alcaraz and Koberle 1980, Fateev and Zamolodchikov 1982), and is found to have a 
rich structure including first-order transitions, massless phases and two second-order 
transitions. One of these occurs at KT = 0.577 and K :  = 0.368 (Fateev and Zamolod- 
chikov 1982), the other one is related to this first one by a simple symmetry and thus 
has the same exponents. If this critical point is described by the conformal theory of 
ZF, we have from (2a)  that the thermal exponent at this point should be y,= 10/7. 

The model has four order parameters which are related, two by two, by Z ,  symmetry. 
The two independent order parameters can be chosen as: 

In the neighbourhood of the point KT, K :  it is energetically more favourable to have 
ni - nj = f 1 than to have ni - nj = *2. As a consequence we will have M ,  d M 2 .  Because 
both order parameters have to vanish at the critical point, it follows that the magnetic 
exponent of M2 should be larger than the exponent of M1. Using (2b) we thus find 
the magnetic exponents yh(2) = 64/35 and yh(l)  = 66/35 for MI and M 2  respectively. 

We now want to verify these predictions using the technique of finite-size scaling 
(Barber 1983). For the Z, model the specific heat in a finite system of size L, at the 
infinite systems critical point KT, KZ, is expected to behave as 

( s a )  CL(KT,  K T )  - L - d + 2 y ~  - L6/’. 

The two independent susceptibilities (corresponding to fluctuations in the respective 
order parameters M ,  and M 2 )  should behave as: 

(5b) X v ) ( ~ T ,  KT) - ~ - d + 2 ~ , ( 2 )  - ~ W 3 5  

and 

( 5 c )  

We have calculated CL(KT,  KT) ,  xv )  (Kf, Kf) and x!Z’(K:, K T )  with the Monte 
Carlo method for square systems with side L = 2,4, . . . , 18, using periodic boundary 
conditions. For the largest system sizes it was necessary to do up to 1.5-2 x IO6 Mcs/spin 
in order to obtain sufficient convergence. 

( 2 )  K* K * )  - ~ - d + 2 ~ ~ ( 1 )  - ~ 6 2 / 3 5 .  
X L (  1 ,  2 
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Errors were obtained from fluctuations in subresults. For each system size at least 
two independent runs were performed. As an example of our results, we show in 
figure 1 our data for CL(KT,  K f )  and ,y(L’(KT, K T ) .  

We analysed our results in two ways. First, we determined the exponents from a 
simple log-log plot. This gave (between brackets we give the conjectured result) 

y,= 1.44*0.02 (1.429) 

yh( 1) = 1.89 f 0.02 ( 1  386) (6) 

Yh( 2) = 1.83 f 0.02 (1.829). 

Secondly, the finite-size data were considered as coefficients of a series which can then 
be analysed by a dlog Pad6 method. For example, in the case of the specific heat, the 
series 

c CL(KT, KT)zL (7) 
L 

is expected to behave as (z - l)d-2yi-1 near z = 1. This method to extract exponents 
has already been applied to some problems in random fractals (Stella er a1 1986) and 
to the surface critical behaviour of the q-state Potts model (Vanderzande and Stella 
1987). The method gives accurate estimates of exponents, because it takes into account 
the ‘global’ behaviour of data, so that ‘local’ fluctuations (which are of course present 
in MC data) are washed out to some extent. (More usual extrapolation methods such 
as the Van den Broeck-Schwarz (1979) method fail for data with noise.) From this 
analysis we find: 

y,= 1.44f0.02 yh( 1) = 1.88 f 0.03 yh(2)= 1.84f0.03. (8) 

We thus see that our data, (6) and (8), beautifully confirm the conformal predictions. 
Most of all, this justifies the identification, made by ZP, of the critical points in the Z, 
model with their 2, conformal quantum field theory. We also mention that this 
conclusion is in agreement with the work of Alcaraz (1986). 

We now turn to the surface critical behaviour, which occurs if we study a semi- 
infinite system (Binder 1983). Here we are interested in the ordinary transition, i.e. in 
the case where surface and bulk couplings are equal. The surface critical exponents 

8 
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Figure 1. The specific heat CL and the susceptibility ,yf) at the Zs critical point as a function 
of system size L. The dots are our Monte Carlo data, the full lines give best fits through 
these data. The estimated error in the data is indicated for L= 18. For smaller systems 
the emor is correspondingly smaller. 
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of the ZN model were not identified by ZP, nor were they studied in the work of Alcaraz 
(1986). From Burkhardt and Cardy (1986) we know that the surface thermal exponent 
x: in this case equals two. We therefore turn to the surface magnetic exponents and 
first find which exponents out of the complete set predicted by ZP correspond to surface 
exponents in the case of the 2, (Ising) and Z3 ( q  = 3 Potts) models. For these models 
the surface exponents are known from conformal invariance for models with c < 1 
(Cardy 1984). We then assume, as Cardy (1984) did for the Potts and O( N) models, 
that these same exponents describe the surface behaviour for all N. In this way we 
find for the ( N -  1) surface exponents x A ( j )  

X K d  = A N  -jYN ( j =  1,.  . . , N-1).  (9) 

(The more familiar exponents y A ( j )  are given by 1 - x A ( j ) . )  We also verified this 
prediction in the case of the Z5 model. As we already did for the surface behaviour 
of the Potts model (Vanderzande and Stella 1987), we calculate x ; ( j )  by calculating 
the surface susceptibility. For the 2, model, there are two such quantities given by 

where V indicates the whole volume (including the surface S ) .  A similar equation 
(with state 2 replaced by state 3) holds for ,yZ2’(KT, K T ) .  According to finite-size 
scaling and equations ( 2 )  and (9) they should behave as: 

(1 la)  X ; ’ I ) ( ~ T ,  K $ )  - L - - ~ + Y , , ( ~ ) + Y ~ ; ( Z )  - ~ - 1 3 / 3 5  

The surface susceptibilities were calculated with the Monte Carlo using periodic 
boundaries conditions in one direction, and free boundaries in the other, thus creating 
a surface S. The calculations were performed for the same system sizes as for the bulk 
properties. Once more, the results were analysed by a simple straight line fit to the 
log-log of the data which gave 

-d  + yh( 1) + yA( 1) = 0.08 f 0.03 (0.086) (12a) 

and a dlog Pad6 analysis which gives 

-d+y~( l )+y~(1)=0.08*0.03 .  

In the case of x ; ’ ) ,  one must be more careful. Indeed, beside the singular term which 
is given by ( l l a ) ,  there is also a regular contribution to ,y:’), which was shown to be 
proportional to 1 / L  (Vanderzande and Stella 1987). Such a term is always present 
but can be neglected unless one considers quantities whose singular contribution goes 
to zero. Therefore we looked at the quantity ,yy)(KT,  K T )  . L which should behave as: 

XI’l)(K?, K $ )  * L = u , + a ,  * L2 (13) 
where a. and a1 are constants and z should be equal to 22/35 = 0.629. We fitted our 
MC data to this form. The best fit (meaning chi-squared minimal) was found for 
z = 0.67 (see figure 2). However we must note that in the whole region 0.62 < z < 0.67, 
the chi-squared value was nearly constant. 
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Figure 2. The surface susceptibility x?”L as a function of system size L. The dots indicate 
our data, the full curve (-4.49+3.64L0.67) is the best fit through the data. An estimate of 
the error is indicated for L = 18. 

We may thus conclude that the prediction (9) is, at least in the case of the 2, 
model, verified by our Monte Carlo calculations. Thus, it is also fair to say that now 
both bulk and surface exponents of the 2, model are probably known exactly, just 
as was already the case for the Potts and O ( N )  models. 

We would like to make one final remark. Equations (2) and (7) imply the scaling 
relation 

x u  = 4Xh(j)/Xt. (14) 

It is remarkable that this scaling relation also holds for the Potts model and the 
tricritical Potts model (Vanderzande and Stella 1987). Using the results from Cardy 
(1984) it is furthermore seen to hold in the O( N) model (-2 =z N =z 2). However it is 
not valid in, e.g., the 3~ king model. Therefore, (14) might possibly be a general 
consequence of 2~ conformal invariance. So far however, we have not been able to 
prove this idea. 

I would like to thank R Dekeyser and F Mallezie for some help in the analysis of the 
data. 
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